skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vargas Zesati, Sergio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Precise coastal shoreline mapping is essential for monitoring changes in erosion rates, surface hydrology, and ecosystem structure and function. Monitoring water bodies in the Arctic National Wildlife Refuge (ANWR) is of high importance, especially considering the potential for oil and natural gas exploration in the region. In this work, we propose a modified variant of the Deep Neural Network based U-Net Architecture for the automated mapping of 4 Band Orthorectified NOAA Airborne Imagery using sparsely labeled training data and compare it to the performance of traditional Machine Learning (ML) based approaches—namely, random forest, xgboost—and spectral water indices—Normalized Difference Water Index (NDWI), and Normalized Difference Surface Water Index (NDSWI)—to support shoreline mapping of Arctic coastlines. We conclude that it is possible to modify the U-Net model to accept sparse labels as input and the results are comparable to other ML methods (an Intersection-over-Union (IoU) of 94.86% using U-Net vs. an IoU of 95.05% using the best performing method). 
    more » « less
  2. Abstract Foundation species have disproportionately large impacts on ecosystem structure and function. As a result, future changes to their distribution may be important determinants of ecosystem carbon (C) cycling in a warmer world. We assessed the role of a foundation tussock sedge (Eriophorum vaginatum) as a climatically vulnerable C stock using field data, a machine learning ecological niche model, and an ensemble of terrestrial biosphere models (TBMs). Field data indicated that tussock density has decreased by ∼0.97 tussocks per m2over the past ∼38 years on Alaska’s North Slope from ∼1981 to 2019. This declining trend is concerning because tussocks are a large Arctic C stock, which enhances soil organic layer C stocks by 6.9% on average and represents 745 Tg C across our study area. By 2100, we project that changes in tussock density may decrease the tussock C stock by 41% in regions where tussocks are currently abundant (e.g. −0.8 tussocks per m2and −85 Tg C on the North Slope) and may increase the tussock C stock by 46% in regions where tussocks are currently scarce (e.g. +0.9 tussocks per m2and +81 Tg C on Victoria Island). These climate-induced changes to the tussock C stock were comparable to, but sometimes opposite in sign, to vegetation C stock changes predicted by an ensemble of TBMs. Our results illustrate the important role of tussocks as a foundation species in determining future Arctic C stocks and highlight the need for better representation of this species in TBMs. 
    more » « less